
©2022 The Mortgage Industry Standards Maintenance Organization. All rights reserved.

GETTING STARTED WITH THE MISMO API TOOLKIT

How can the MISMO API Toolkit help organizations adopt the microservices architecture

style?

To accelerate the development of new Mortgage APIs, MISMO has developed the API Toolkit. It

supports small, independent services that can be composed into larger transactions. The Toolkit

provides a fast, efficient way to develop APIs down to a microservice level, resulting in shorter time-to-

market and improved interoperability. The core offering in this toolkit is a set of standalone OpenAPI

objects defined as individual YAML files (for example, Address.yaml, Borrower.yaml, and Asset.yaml).

These YAML files can be used as building blocks to define an API. No single schema with a pre-defined

hierarchy is provided. The toolkit offers the flexibility to design data structures appropriate for a specific

business use case.

The Use Case

This article will illustrate how to use the API Toolkit to design the schema for a simple use case. Future

articles will build on this and provide examples for a full OpenAPI specification.

To get started, we will focus exclusively on the API request for the following use case.

“As a product owner, I need to enable external clients to submit basic borrower information, such as

their legal name and date of birth, so that I can determine if the borrower can be pre-approved for a

mortgage.”

Designing the schema
This use case requires the borrower first name, middle name, last name, birthdate, and type

(Primary/Secondary). The schema design should use an optimal hierarchy depth, eliminating

unnecessary hierarchy where possible and retaining hierarchy when required to express the intent of

the interface and to align with MISMO guidelines.

Step 1 – Identify the core entities: The YAML files containing the required datapoints can be identified

by reviewing the Enhanced Logical Data Dictionary or searching the contents of the provided YAML files.

In this case, Name.yaml and Borrower.yaml contain all the necessary datapoints.

Step 2 – Determine the desired level of MISMO compatibility:

According to the current MISMO model, Name is an entity that can be used across different parties –

hence it is modeled separately. We will provide two separate ways to model the borrower to illustrate

the levels of MISMO compatibility.

▪ Approach 1: Schema Aligned with the MISMO Model (naming and structure)

https://www.mismo.org/standards-and-resources/additional-tools-and-resources/api-toolkit

©2022 The Mortgage Industry Standards Maintenance Organization. All rights reserved.

The first schema will follow the naming and structure within the MISMO model. Then, the

flattening rules outlined in the MISMO API Toolkit Implementation Guide will be applied.

Hierarchy will be retained to reflect the cardinality in the MISMO model and eliminate ambiguity

for entities that exists under various parents within the model (for example, “Single-Path Rule”).

▪ Approach 2: Schema Aligned with the MISMO Terms and Definitions (naming only)

The second schema will introduce a custom structure that leverages the MISMO vocabulary. It

will merge the Name and Borrower entities into a single Borrower entity to produce a simpler

and more intuitive schema. It will use the appropriate MISMO terms and definitions but will not

adhere to the structure of the MISMO model.

Both schemas will enforce necessary constraints at the entity and property level, as required by the use

case. Either approach is supported by the MISMO API Toolkit. The tradeoffs of each approach are

discussed in this article. Teams must decide which approach best fits their use case.

Building the schema
Step 1 - Define the base types:

Borrower.yaml and Name.yaml define the entities in their entirety with all the necessary properties. The

properties that are not needed for this use case will be eliminated. For simplicity, the definitions will be

combined into a single file, rather than using external references.

Step 2 – Combine the entities and flatten the hierarchy:

SCHEMA ALGINED WITH THE MISMO MODEL

1. First, we will identify the common parents for Borrower and Name within the MISMO Model.
The following paths apply for this use case:

party.individual.name

party.roles[].borrower

Both Name and Borrower appear under Party, so parties will be the root for this schema.
2. Apply the Single-Path Rule - The MISMO API Toolkit defines two flattening rules to eliminate

unnecessary hierarchy. The Single-Path Rule states that implementers may flatten the hierarchy
when there is exactly one path to the datapoint in the MISMO model. Name appears
underneath multiple containers (for example, Contact, Alias, Individual, etc.), so this schema will
retain the hierarchy required to indicate that the name belongs to an individual. A single path
exists for borrower, so the hierarchy can be flattened if it does not violate the Cardinality rule
below.

3. Apply the Cardinality Rule – All API objects below the root must use the cardinality in the MISMO
model. Roles is plural within the model, and it is not the root object. So, the hierarchy for
borrower cannot be flattened.

Party:
 type: object
 properties:
 roles:
 type: array
 items:

Contents of Party.yaml. Only individuals

are needed for this use case. Legal

entities will not be supported by the API.

©2022 The Mortgage Industry Standards Maintenance Organization. All rights reserved.

 $ref: "#/definitions/Role"
 individual:
 $ref: "#/definitions/Individual"

Role:
 type: object
 properties:
 borrower:
 $ref: "#/definitions/Borrower"

Borrower:
 type: object
 properties:
 borrowerBirthDate:
 $ref: "#/definitions/MISMODate"
 borrowerClassificationType:
 - type: string
 enum:
 - Primary
 - Secondary

Individual:
 type: object
 properties:
 name:
 $ref: "#/definitions/Name"

Name:
 type: object
 properties:
 firstName:
 $ref: "#/definitions/MISMOString50"
 lastName:
 $ref: "#/definitions/MISMOString50"
 middleName:
 $ref: "#/definitions/MISMOString50"

MISMOString50:
 type: string
 maxLength: 50

Contents of Borrower.yaml.

Contents of Role.yaml.

Contents of Name.yaml.

Contents of Individual.yaml.

Custom type to restrict the

length to 50 characters.

©2022 The Mortgage Industry Standards Maintenance Organization. All rights reserved.

Custom data types are defined to restrict the length of the strings (MISMOString50) as depicted above.

MISMOString50 restricts the length to 50 characters. Only the length is restricted, so MISMOString is

used as the base name for the new type.

©2022 The Mortgage Industry Standards Maintenance Organization. All rights reserved.

Notice the JSON request produced by the schema. The structure aligns with the MISMO model. It allows

parties to play multiple roles and clearly identifies the name attributes as the individual’s legal name.

However, it also includes multiple levels in the hierarchy which introduces complexity.

{

 "parties": [

 {

 "roles": [

 {

 "borrower":

 {

 "borrowerBirthDate": "1979-01-01",

 "borrowerClassificationType": "Primary"

 }

 }],

 "individual":

 {

 "name":

 {

 "firstName": "John",

 "lastName": "Cox",

 "middleName": "Henry"

 }

 }

 },

 {

 "roles": [

 {

 "borrower":

 {

 "borrowerBirthDate": "1980-11-11",

 "borrowerClassificationType": "Secondary"

 }

 }],

 "individual":

 {

 "name":

 {

 "firstName": "Jane",

 "lastName": "Cox"

 }

 }

 }]

}

SCHEMA ALGINED WITH MISMO TERMS AND DEFINITIONS

For the minimum level of MISMO Compatibility, a composite Borrower object will include properties

from Borrower.yaml and Name.yaml. The MISMO datapoint names will be leveraged, however the

hierarchy in the MISMO model will be eliminated to produce a flattened structure.

Name:
 type: object
 properties:
 firstName:
 "$ref": "#/definitions/MISMOString50"
 lastName:
 "$ref": "#/definitions/MISMOString50"
 middleName:
 "$ref": "#/definitions/MISMOString50"

1. Parties is the root of the

document.

2. There are multiple paths to

Name in the MISMO model,

so the hierarchy is retained to

eliminate ambiguity.

3. Roles is plural, so an array is

used to retain cardinality.

References to custom data types.

©2022 The Mortgage Industry Standards Maintenance Organization. All rights reserved.

Borrower:
 allOf:
 - "$ref": "#/definitions/Name"
 - properties:
 borrowerBirthDate:
 "$ref": "#/definitions/MISMODate"
 borrowerClassificationType:
 type: string
 enum:
 - Primary
 - Secondary

 required:

 - firstName
 - lastName
 - borrowerBirthDate
 - borrowerClassificationType

Notice the JSON request produced by the schema. The datapoint names are the same as the previous

example. However, the nested objects (such as Roles and Individual) are eliminated producing a

structure that is completely flattened. This streamlined API request results in the following

consequences:

• A party cannot play multiple roles.

• The name attributes are not explicitly identified as the legal name for an Individual.

Software engineers need to consider the tradeoffs and choose the appropriate schema design for their

use case. The nesting depth and context specific constraints are important considerations for

transactional schema design.

 {

 "Borrowers": [

 {

 "firstName": "John",

 "lastName": "Cox",

 "middleName": "Henry",

 "borrowerBirthDate": "1979-01-01",

 "borrowerClassificationType": "Primary",

 },

 {

 "firstName": "Jane",

 "lastName": "Cox",

 "borrowerBirthDate": "1980-01-01",

 "borrowerClassificationType": "Secondary",

 }

]

 }

The API Toolkit provides a fast, efficient way to develop MISMO aligned APIs down to a microservice

level, resulting in shorter time-to-market and improved interoperability. The examples above can be

Contents of Borrower.yaml.

Attributes from Name entity used

without adding nesting level.

Use case specific constraints.

1. Borrowers is the root.

2. Hierarchy is completely

flattened.

3. Secondary borrower does

not have the optional

middle name.

©2022 The Mortgage Industry Standards Maintenance Organization. All rights reserved.

expanded to suit any use case your entity might have. If you have any questions or comments, the API

Community of Practice meets the 1st and 3rd Thursday of each month. We would love to hear from you.

Note: MISMO’s API Toolkit is available to its members free of charge. Contact us at info@MISMO.org to

learn about the benefits of MISMO membership.

https://www.mismo.org/get-involved/workgroup/api
https://www.mismo.org/get-involved/workgroup/api
https://www.mismo.org/standards-resources/mismo-product/api-toolkit
mailto:info@MISMO.org
https://www.mismo.org/membership/join-mismo

